Use the law of cosine to find the following missing values. c=\sqrt{10} c=\sqrt{7} c=5 c=6 \cos\left(\theta\right)= \dfrac{\sqrt{10}}{10} \cos\left(\theta\right)=- \dfrac{\sqrt{10}}{10} \cos\left(\theta\right)= \dfrac{\sqrt{5}}{5} \cos\left(\theta\right)= \dfrac{\sqrt{3}}{2} \widehat{A}=30^\circ \widehat{A}=60^\circ \widehat{A}=45^\circ \widehat{A}=15^\circ AB=\sqrt{2} AB=2\sqrt{2} AB=\dfrac{\sqrt{2}}{2} 2 BC =\sqrt{13} BC =\sqrt{15} BC =5 BC =\sqrt{12} \widehat{A}=90^\circ \widehat{A}=60^\circ \widehat{A}=45^\circ \widehat{A}=80^\circ x=5 x=4 x=6 x=9
\cos\left(\theta\right)= \dfrac{\sqrt{10}}{10} \cos\left(\theta\right)=- \dfrac{\sqrt{10}}{10} \cos\left(\theta\right)= \dfrac{\sqrt{5}}{5} \cos\left(\theta\right)= \dfrac{\sqrt{3}}{2}
\cos\left(\theta\right)= \dfrac{\sqrt{10}}{10} \cos\left(\theta\right)=- \dfrac{\sqrt{10}}{10} \cos\left(\theta\right)= \dfrac{\sqrt{5}}{5} \cos\left(\theta\right)= \dfrac{\sqrt{3}}{2}