Given \log_2\left(8\right)=x, convert the equation to exponential form.
In general:
\log_a\left(b\right)=c
if and only if:
a^{c}=b
In our problem:
\log_2\left(8\right)=x
2^{x}=8
Given \log\left(100\right)=b, convert the equation to exponential form.
In general:
\log_a\left(b\right)=c
if and only if:
a^{c}=b
In our problem:
\log\left(100\right)=b
10^{b}=100
Given \ln\left(e^{3}\right)=m, convert the equation to exponential form.
In general:
\log_a\left(b\right)=c
if and only if:
a^{c}=b
In our problem:
\ln\left(e^{3}\right)=m
e^{m}=e^{3}
Given \log_\dfrac{1}{2}\left(16\right)=t, convert the equation to exponential form.
In general:
\log_a\left(b\right)=c
if and only if:
a^{c}=b
In our problem:
\log_\dfrac{1}{2}\left(16\right)=t
\left( \dfrac{1}{2}\right)^{t}=16
Given \log_5\left(\dfrac{1}{25}\right)=u, convert the equation to exponential form.
In general:
\log_a\left(b\right)=c
if and only if:
a^{c}=b
In our problem:
\log_5\left(\dfrac{1}{25}\right)=u
5^{u}=\dfrac{1}{25}
Given \log\left(\sqrt{10}\right)=p, convert the equation to exponential form.
In general:
\log_a\left(b\right)=c
if and only if:
a^{c}=b
In our problem:
\log\left(\sqrt{10}\right)=p
10^{p}=\sqrt{10}
Given \ln\left(\sqrt[4]{e^{3}}\right)=k, convert the equation to exponential form.
In general:
\log_a\left(b\right)=c
if and only if:
a^{c}=b
In our problem:
\ln\left(\sqrt[4]{e^{3}}\right)=k
e^{k}=\sqrt[4]{e^{3}}