Solve the following equations.
-\sin^2\left(x\right)+2\cos\left(x\right)=2
3\cos\left(x\right) + \cos\left(2x\right) = -2
3\sin\left(2x\right) - \cos\left(x\right)\sin\left(2x\right) = 4\sin\left(x\right)
\cos\left(x\right) + \cos\left(2x\right) = -\sin^2\left(x\right)
-2\sin^2\left(x\right) + 2 - 4\cos\left(2x\right) + 4\sin\left(x\right) = -2\cos^2\left(x\right)
\cos\left(2x\right) + \sin\left(\dfrac{-x}{2}\right)\cos\left(\dfrac{x}{2}\right) = -5
\tan^2\left(x\right) + \dfrac{3 - \cos\left(2x\right)}{1 + \cos\left(2x\right)} = \cos\left(2x\right)