01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Statistics & Probabilities
  4. Exercise : Use the central limit theorem to find the probability that the sample mean is between two given real numbers

Use the central limit theorem to find the probability that the sample mean is between two given real numbers Statistics & Probabilities

Consider a sample with the following characterization:

  • \mu =582
  • \sigma = 65
  • Size: 25

Let m be the sample mean. Use the central limit theorem to determine approximately P\left(564\le m\le 600\right).

-

We have:

P\left(a \lt m \lt b\right) = P\left(\dfrac{a-\mu}{\sigma/\sqrt{n}} \lt Z \lt \dfrac{b-\mu}{\sigma/\sqrt{n}}\right)

We want to compute the following:

P\left(564 \lt m \lt 600\right)

Given that \mu =582, \sigma = 65 and n=25, the corresponding z-scores are:

P\left(\dfrac{564-582}{65/\sqrt{25}} \lt Z \lt \dfrac{600-582}{65/\sqrt{25}}\right) =P\left( -1.38 \lt Z \lt 1.38\right)

This probability can also be rewritten as:

P\left(Z \lt 1.38\right) - P\left(Z\lt-1.38\right) = P\left(Z \leq 1.38\right) - P\left(Z\leq-1.38\right)

P\left(Z \leq 1.38\right) - P\left(Z\leq-1.38\right) =F\left(1.38\right)-F\left(-1.38\right)

By the z-table we have:

F\left(1.38\right)-F\left(-1.38\right) = 0.83

-

P\left(564 \lt m \lt 600\right)= 0.83

Consider a sample with the following characterization:

  • \mu =364
  • \sigma = 35
  • Size: 49

Let m be the sample mean. Use the central limit theorem to determine approximately P\left(358\le m\le 370\right).

-

We have:

P\left(a \lt m \lt b\right) = P\left(\dfrac{a-\mu}{\sigma/\sqrt{n}} \lt Z \lt \dfrac{b-\mu}{\sigma/\sqrt{n}}\right)

We want to compute the following:

P\left(358 \lt m \lt 370\right)

Given that \mu =364, \sigma = 35 and n=49, the corresponding z-scores are:

P\left(\dfrac{358-364}{35/\sqrt{49}} \lt Z \lt \dfrac{370-564}{35/\sqrt{49}}\right) =P\left( -1.2 \lt Z \lt 1.2\right)

This probability can also be rewritten as:

P\left(Z \lt 1.2\right) - P\left(Z\lt-1.2\right) = P\left(Z \leq 1.2\right) - P\left(Z\leq-1.2\right)

P\left(Z \leq 1.2\right) - P\left(Z\leq-1.2\right) =F\left(1.2\right)-F\left(-1.2\right)

By the z-table we have:

F\left(1.2\right)-F\left(-1.2\right) = 0.8\ 849-0.1\ 151 \approx 0.77

-

P\left(358\le m\le 370\right)=0.77

Consider a sample with the following characterization:

  • \mu =131
  • \sigma =80
  • Size: 16

Let m be the sample mean. Use the central limit theorem to determine approximately P\left(100\le m\le 200\right).

-

We have:

P\left(a \lt m \lt b\right) = P\left(\dfrac{a-\mu}{\sigma/\sqrt{n}} \lt Z \lt \dfrac{b-\mu}{\sigma/\sqrt{n}}\right)

We want to compute the following:

P\left(100 \lt m \lt 200\right)

Given that \mu =131, \sigma = 80 and n=16, the corresponding z-scores are:

P\left(\dfrac{100-131}{80/\sqrt{16}} \lt Z \lt \dfrac{200-131}{80/\sqrt{16}}\right) =P\left( -1.55 \lt Z \lt 3.45\right)

This probability can also be rewritten as:

P\left(Z \lt 3.45\right) - P\left(Z\lt-1.55\right) = P\left(Z \leq 3.45\right) - P\left(Z\leq-1.55\right)

P\left(Z \leq 3.45\right) - P\left(Z\leq-1.55\right) =F\left(3.45\right)-F\left(-1.55\right)

By the z-table we have:

F\left(3.45\right)-F\left(-1.55\right) = 0.9\ 997-0.606 \approx 0.94

-

P\left(100\le m\le 200\right)=0.94

Consider a sample with the following characterization:

  • \mu =177
  • \sigma = 48
  • Size: 64

Let m be the sample mean. Use the central limit theorem to determine approximately P\left(171\le m\le 189\right).

-

We have:

P\left(a \lt m \lt b\right) = P\left(\dfrac{a-\mu}{\sigma/\sqrt{n}} \lt Z \lt \dfrac{b-\mu}{\sigma/\sqrt{n}}\right)

We want to compute the following:

P\left(171 \lt m \lt 189\right)

Given that \mu =177, \sigma = 48 and n=16, the corresponding z-scores are:

P\left(\dfrac{171-177}{48/\sqrt{64}} \lt Z \lt \dfrac{189-177}{48/\sqrt{64}}\right) =P\left( -1 \lt Z \lt 2\right)

This probability can also be rewritten as:

P\left(Z \lt 2\right) - P\left(Z\lt-1\right) = P\left(Z \leq 2\right) - P\left(Z\leq-1\right)

P\left(Z \leq 2\right) - P\left(Z\leq-1\right) =F\left(2\right)-F\left(-1\right)

By the z-table we have:

F\left(2\right)-F\left(-1\right) = 0.9\ 772-0.1\ 587 \approx 0.82

-

P\left(171\le m\le 189\right) = 0.82

Consider a sample with the following characterization:

  • \mu =1\ 216
  • \sigma = 660
  • Size: 121

Let m be the sample mean. Use the central limit theorem to determine approximately P\left(1\ 200\le m\le 1\ 300\right).

-

We have:

P\left(a \lt m \lt b\right) = P\left(\dfrac{a-\mu}{\sigma/\sqrt{n}} \lt Z \lt \dfrac{b-\mu}{\sigma/\sqrt{n}}\right)

We want to compute the following:

P\left(1\ 200 \lt m \lt 1\ 300\right)

Given that \mu =1\ 216, \sigma = 660 and n=121, the corresponding z-scores are:

P\left(\dfrac{1\ 200-1\ 216}{660/\sqrt{121}} \lt Z \lt \dfrac{1\ 300-1\ 216}{660/\sqrt{121}}\right) =P\left( -0.27 \lt Z \lt 1.4\right)

This probability can also be rewritten as:

P\left(Z \lt 1.4\right) - P\left(Z\lt-0.27\right) = P\left(Z \leq 1.4\right) - P\left(Z\leq-0.27\right)

P\left(Z \leq 1.4\right) - P\left(Z\leq-0.27\right) =F\left(1.4\right)-F\left(-0.27\right)

By the z-table we have:

F\left(1.4\right)-F\left(-0.27\right) = 0.9\ 192-0.3\ 936 \approx 0.53

-

P\left(1\ 200\le m\le 1\ 300\right)=0.53

Consider a sample with the following characterization:

  • \mu =43
  • \sigma =18
  • Size: 81

Let m be the sample mean. Use the central limit theorem to determine approximately P\left(40\le m\le 45\right).

-

We have:

P\left(a \lt m \lt b\right) = P\left(\dfrac{a-\mu}{\sigma/\sqrt{n}} \lt Z \lt \dfrac{b-\mu}{\sigma/\sqrt{n}}\right)

We want to compute the following:

P\left(40 \lt m \lt 45\right)

Given that \mu =43, \sigma = 18 and n=81, the corresponding z-scores are:

P\left(\dfrac{40-43}{18/\sqrt{81}} \lt Z \lt \dfrac{45-43}{18/\sqrt{81}}\right) =P\left( -1.5 \lt Z \lt 1\right)

This probability can also be rewritten as:

P\left(Z \lt 1\right) - P\left(Z\lt-1.5\right) = P\left(Z \leq 1\right) - P\left(Z\leq-1.5\right)

P\left(Z \leq 1\right) - P\left(Z\leq-1.5\right) =F\left(1\right)-F\left(-1.5\right)

By the z-table we have:

F\left(1\right)-F\left(-1.5\right) = 0.8\ 413-0.668 \approx 0.77

-

P\left(40\le m\le 45\right) =0.77

Consider a sample with the following characterization:

  • \mu =77
  • \sigma = 66
  • Size: 36

Let m be the sample mean. Use the central limit theorem to determine approximately P\left(90\le m\le 100\right).

-

We have:

P\left(a \lt m \lt b\right) = P\left(\dfrac{a-\mu}{\sigma/\sqrt{n}} \lt Z \lt \dfrac{b-\mu}{\sigma/\sqrt{n}}\right)

We want to compute the following:

P\left(90 \lt m \lt 100\right)

Given that \mu =77, \sigma = 66 and n=36, the corresponding z-scores are:

P\left(\dfrac{90-77}{66/\sqrt{36}} \lt Z \lt \dfrac{100-77}{66/\sqrt{36}}\right) =P\left( 2.09 \lt Z \lt 1.18\right)

This probability can also be rewritten as:

P\left(Z \lt 2.09\right) - P\left(Z\lt1.18\right) = P\left(Z \leq 2.09\right) - P\left(Z\leq 1.18\right)

P\left(Z \leq 2.09\right) - P\left(Z\leq 1.18\right) =F\left(2.09\right)-F\left(1.18\right)

By the z-table we have:

F\left(2.09\right)-F\left(1.18\right) = 0.9\ 817-0.8\ 810 \approx 0.1

-

P\left(90\le m\le 100\right)=0.1

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Hypothesis testing and estimation
  • Exercise : Find confidence intervals for population means and/or population proportion when the sample size, the standard deviation and the sample mean are given
  • Exercise : Determine whether samples are biased or unbiased
  • Exercise : Determine the sample size needed for a level of confidence
  • Exercise : Identify whether an experiment is well constructed
  • support@kartable.com
  • Legal notice

© Kartable 2026