X follows \mathcal{N}\left(0{,}1\right).
Determine P\left(-1.4 \lt X \lt 1.4\right) using the following table.

For a normal distribution with mean \mu=0 and standard deviation \sigma=1, we have:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)
And:
P\left(X \lt -a\right)=1-P\left(X \lt a\right)
Therefore:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)=P\left(X \lt a\right)-\left(1-P\left(X \lt a\right)\right)=2\cdot P\left(X \lt a\right)-1
According to the table:
P\left(X \lt 1.4\right)=0.9\ 192
Thus:
P\left(-1.4 \lt X \lt 1.4\right)=2\cdot P\left(X \lt 1.4\right)-1
P\left(-1.4 \lt X \lt 1.4\right)=2\cdot0.9\ 192-1
P\left(-1.4 \lt X \lt 1.4\right)=0.8\ 384
X follows \mathcal{N}\left(0{,}1\right).
Determine P\left(-2.3 \lt X \lt 2.3\right) using the following table.

Insert a table of a normal distribution.
For a normal distribution with mean \mu=0 and standard deviation \sigma=1, the z score of any value in the distribution equals the value z_{a}=a and we have:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)
Since:
P\left(X \lt -a\right)=1-P\left(X \lt a\right)
We have:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)=P\left(X \lt a\right)-\left(1-P\left(X \lt a\right)\right)=2\cdot P\left(X \lt a\right)-1
In our problem:
P\left(X \lt 2.3\right)=0.9\ 893
So:
P\left(-2.35 \lt X \lt 2.3\right)=2\cdot P\left(X \lt 2.3\right)-1=2\cdot0.9\ 893 -1 = 0.9\ 786
P\left(-2.35 \lt X \lt 2.35\right)=0.9\ 812
X follows \mathcal{N}\left(0{,}1\right).
Determine P\left(-1.76 \lt X \lt 1.76\right) using the following table.

Insert a table of a normal distribution.
For a normal distribution with mean \mu=0 and standard deviation \sigma=1, the z score of any value in the distribution equals the value:
z_{a}=a
Also:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)
Since:
P\left(X \lt -a\right)=1-P\left(X \lt a\right)
We have:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)=P\left(X \lt a\right)-\left(1-P\left(X \lt a\right)\right)=2\cdot P\left(X \lt a\right)-1
In our problem:
P\left(X \lt 1.76\right)=0.9\ 608
Thus:
P\left(-1.76 \lt X \lt 1.76\right)=2\cdot P\left(X \lt 1.76\right)-1=2\cdot0.9\ 608-1=0.9\ 216
P\left(-1.76 \lt X \lt 1.76\right)=0.9\ 216
X follows \mathcal{N}\left(0{,}1\right).
Determine P\left(-0.5 \lt X \lt 0.5\right) using the following table.

Insert a table of a normal distribution.
For a normal distribution with mean \mu=0 and standard deviation \sigma=1, the z score of any value in the distribution equals the value:
z_{a}=a
Also:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)
Since:
P\left(X \lt -a\right)=1-P\left(X \lt a\right)
We have:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)=P\left(X \lt a\right)-\left(1-P\left(X \lt a\right)\right)=2\cdot P\left(X \lt a\right)-1
In our problem:
P\left(X \lt 0.5\right)=0.5\ 199
Thus:
P\left(-0.5 \lt X \lt 0.5\right)=2\cdot P\left(X \lt 0.5\right)-1=2\cdot0.5\ 199-1=0.398
P\left(-0.5 \lt X \lt 0.5\right)=0.398
X follows \mathcal{N}\left(0{,}1\right).
Determine P\left(-2 \lt X \lt 2\right) using the following table.

Insert a table of a normal distribution.
For a normal distribution with mean \mu=0 and standard deviation \sigma=1, the z score of any value in the distribution equals the value:
z_{a}=a
Also:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)
Since:
P\left(X \lt -a\right)=1-P\left(X \lt a\right)
We have:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)=P\left(X \lt a\right)-\left(1-P\left(X \lt a\right)\right)=2\cdot P\left(X \lt a\right)-1
In our problem:
P\left(X \lt 2\right)=0.9\ 772
Thus:
P\left(-2 \lt X \lt 2\right)=2\cdot P\left(X \lt 2\right)-1=2\cdot0.9\ 772-1=0.9\ 544
P\left(-2 \lt X \lt 2\right)=0.9\ 544
X follows \mathcal{N}\left(0{,}1\right).
Determine P\left(-1.37 \lt X \lt 1.37\right) using the following table.

Insert a table of a normal distribution.
For a normal distribution with mean \mu=0 and standard deviation \sigma=1, the z score of any value in the distribution equals the value:
z_{a}=a
Also:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)
Since:
P\left(X \lt -a\right)=1-P\left(X \lt a\right)
We have:
P\left(-a \lt X \lt a\right)=P\left(X \lt a\right)-P\left(X \lt -a\right)=P\left(X \lt a\right)-\left(1-P\left(X \lt a\right)\right)=2\cdot P\left(X \lt a\right)-1
In our problem:
P\left(X \lt 1.37\right)=0.9\ 147
Thus:
P\left(-1.37 \lt X \lt 1.37\right)=2\cdot P\left(X \lt 1.37\right)-1=2\cdot0.9\ 147-1=0.8\ 294
P\left(-1.37 \lt X \lt 1.37\right)=0.8\ 294