Find the equation of the following hyperbolas.
\left(-4, 1\right) and \left(6{,}1\right) are the focuses of the hyperbola.
![-](https://media-image.kartable.fr/uploads/finalImages/final_5c10e6fec07693.26127446.png)
\left(-6{,}2\right) and \left(4{,}2\right) are the focuses of the hyperbola.
![-](https://media-image.kartable.fr/uploads/finalImages/final_5c10e728cbd353.21990819.png)
\left(-7{,}0\right) and \left(13{,}0\right) are the focuses of the hyperbola.
![-](https://media-image.kartable.fr/uploads/finalImages/final_5c10e74116b3f2.88797636.png)
\left(-13{,}0\right) and \left(13{,}0\right) are the focuses of the hyperbola.
![-](https://media-image.kartable.fr/uploads/finalImages/final_5c10e76572e934.97168622.png)
\left(-3, 1\right) and \left(-3{,}11\right) are the focuses of the hyperbola.
![-](https://media-image.kartable.fr/uploads/finalImages/final_5c10e78251d502.21104732.png)
\left(4, -10\right) and \left(4, 10\right) are the focuses of the hyperbola.
![-](https://media-image.kartable.fr/uploads/finalImages/final_5c10e7a91d4836.13980912.png)
\left(-2, 1-\sqrt{2}\right) and \left(-2, 1+\sqrt{2}\right) are the focuses of the hyperbola.
![-](https://media-image.kartable.fr/uploads/finalImages/final_5c10fd902571c3.52953002.png)