Find the equation of the following circles. \left(x-2\right)^2+\left(y-1\right)^2=4 x^2+\left(y-1\right)^2=4 \left(x-1\right)^2+\left(y-2\right)^2=2 x^2+\left(y-1\right)^2=2 \left(x+1\right)^2+\left(y-2\right)^2=4 x^2+\left(y-1\right)^2=2 \left(x-1\right)^2+\left(y+2\right)^2=4 \left(x-2\right)^2+\left(y-2\right)^2=2 \left(x+2\right)^2+y^2=1 x^2+\left(y+2\right)^2=1 \left(x-2\right)^2+\left(y-2\right)^2=2 x^2+\left(y-1\right)^2=2 \left(x+2\right)^2+\left(y-1\right)^2=4 \left(x-2\right)^2+\left(y-1\right)^2=4 \left(x-1\right)^2+\left(y+2\right)^2=2 \left(x+2\right)^2+\left(y+1\right)^2=2 \left(x+1\right)^2+\left(y-1\right)^2=\dfrac{1}{4} \left(x-1\right)^2+\left(y+1\right)^2=\dfrac{1}{4} \left(x-1\right)^2+\left(y-2\right)^2=1 \left(x+1\right)^2+\left(y+1\right)^2=1 \left(x-3\right)^2+y^2=9 x^2+\left(y-3\right)^2=4 \left(x-3\right)^2+\left(y-2\right)^2=9 \left(x+3\right)^2+y^2=4 \left(x+4\right)^2+\left(y-1\right)^2=4 \left(x-4\right)^2+\left(y+1\right)^2=4 \left(x+1\right)^2+\left(y-2\right)^2=2 \left(x-1\right)^2+\left(y-1\right)^2=2
\left(x-2\right)^2+\left(y-1\right)^2=4 x^2+\left(y-1\right)^2=4 \left(x-1\right)^2+\left(y-2\right)^2=2 x^2+\left(y-1\right)^2=2
\left(x-2\right)^2+\left(y-1\right)^2=4 x^2+\left(y-1\right)^2=4 \left(x-1\right)^2+\left(y-2\right)^2=2 x^2+\left(y-1\right)^2=2
\left(x+1\right)^2+\left(y-2\right)^2=4 x^2+\left(y-1\right)^2=2 \left(x-1\right)^2+\left(y+2\right)^2=4 \left(x-2\right)^2+\left(y-2\right)^2=2
\left(x+1\right)^2+\left(y-2\right)^2=4 x^2+\left(y-1\right)^2=2 \left(x-1\right)^2+\left(y+2\right)^2=4 \left(x-2\right)^2+\left(y-2\right)^2=2
\left(x+2\right)^2+y^2=1 x^2+\left(y+2\right)^2=1 \left(x-2\right)^2+\left(y-2\right)^2=2 x^2+\left(y-1\right)^2=2
\left(x+2\right)^2+y^2=1 x^2+\left(y+2\right)^2=1 \left(x-2\right)^2+\left(y-2\right)^2=2 x^2+\left(y-1\right)^2=2
\left(x+2\right)^2+\left(y-1\right)^2=4 \left(x-2\right)^2+\left(y-1\right)^2=4 \left(x-1\right)^2+\left(y+2\right)^2=2 \left(x+2\right)^2+\left(y+1\right)^2=2
\left(x+2\right)^2+\left(y-1\right)^2=4 \left(x-2\right)^2+\left(y-1\right)^2=4 \left(x-1\right)^2+\left(y+2\right)^2=2 \left(x+2\right)^2+\left(y+1\right)^2=2
\left(x+1\right)^2+\left(y-1\right)^2=\dfrac{1}{4} \left(x-1\right)^2+\left(y+1\right)^2=\dfrac{1}{4} \left(x-1\right)^2+\left(y-2\right)^2=1 \left(x+1\right)^2+\left(y+1\right)^2=1
\left(x+1\right)^2+\left(y-1\right)^2=\dfrac{1}{4} \left(x-1\right)^2+\left(y+1\right)^2=\dfrac{1}{4} \left(x-1\right)^2+\left(y-2\right)^2=1 \left(x+1\right)^2+\left(y+1\right)^2=1
\left(x-3\right)^2+y^2=9 x^2+\left(y-3\right)^2=4 \left(x-3\right)^2+\left(y-2\right)^2=9 \left(x+3\right)^2+y^2=4
\left(x-3\right)^2+y^2=9 x^2+\left(y-3\right)^2=4 \left(x-3\right)^2+\left(y-2\right)^2=9 \left(x+3\right)^2+y^2=4
\left(x+4\right)^2+\left(y-1\right)^2=4 \left(x-4\right)^2+\left(y+1\right)^2=4 \left(x+1\right)^2+\left(y-2\right)^2=2 \left(x-1\right)^2+\left(y-1\right)^2=2
\left(x+4\right)^2+\left(y-1\right)^2=4 \left(x-4\right)^2+\left(y+1\right)^2=4 \left(x+1\right)^2+\left(y-2\right)^2=2 \left(x-1\right)^2+\left(y-1\right)^2=2