Solve the following equations.
\cos^2\left(x\right)=\sin^2\left(x\right)
\sin\left(2x\right)+\sin^{2}\left(x\right)=\cos^{2}\left(x\right)
\sqrt{3}\cos\left(x\right)+\sin\left(x\right)=2
\cos\left(x\right)\cos\left(\dfrac{\pi}{5}\right)=\sin\left(x\right)\sin\left(\dfrac{\pi}{5}\right)
\sin\left(x-\dfrac{\pi}{4}\right)=\sqrt{3}\cos\left(x-\dfrac{\pi}{4}\right)
\dfrac{1-\tan^{2}\left(x\right)}{1+\tan^{2}\left(x\right)}=1
\sin^{2}\left(x\right)+\cos^{2}\left(x\right)-2\sin\left(x\right)+1=0